pyspark.sql.functions.lag¶
-
pyspark.sql.functions.lag(col: ColumnOrName, offset: int = 1, default: Optional[Any] = None) → pyspark.sql.column.Column[source]¶ Window function: returns the value that is offset rows before the current row, and default if there is less than offset rows before the current row. For example, an offset of one will return the previous row at any given point in the window partition.
This is equivalent to the LAG function in SQL.
New in version 1.4.0.
Changed in version 3.4.0: Supports Spark Connect.
- Parameters
- col
Columnor str name of column or expression
- offsetint, optional default 1
number of row to extend
- defaultoptional
default value
- col
- Returns
Columnvalue before current row based on offset.
Examples
>>> from pyspark.sql import Window >>> df = spark.createDataFrame([("a", 1), ... ("a", 2), ... ("a", 3), ... ("b", 8), ... ("b", 2)], ["c1", "c2"]) >>> df.show() +---+---+ | c1| c2| +---+---+ | a| 1| | a| 2| | a| 3| | b| 8| | b| 2| +---+---+ >>> w = Window.partitionBy("c1").orderBy("c2") >>> df.withColumn("previos_value", lag("c2").over(w)).show() +---+---+-------------+ | c1| c2|previos_value| +---+---+-------------+ | a| 1| NULL| | a| 2| 1| | a| 3| 2| | b| 2| NULL| | b| 8| 2| +---+---+-------------+ >>> df.withColumn("previos_value", lag("c2", 1, 0).over(w)).show() +---+---+-------------+ | c1| c2|previos_value| +---+---+-------------+ | a| 1| 0| | a| 2| 1| | a| 3| 2| | b| 2| 0| | b| 8| 2| +---+---+-------------+ >>> df.withColumn("previos_value", lag("c2", 2, -1).over(w)).show() +---+---+-------------+ | c1| c2|previos_value| +---+---+-------------+ | a| 1| -1| | a| 2| -1| | a| 3| 1| | b| 2| -1| | b| 8| -1| +---+---+-------------+