PipelineModel¶
-
class
pyspark.ml.PipelineModel(stages: List[pyspark.ml.base.Transformer])[source]¶ Represents a compiled pipeline with transformers and fitted models.
New in version 1.3.0.
Methods
clear(param)Clears a param from the param map if it has been explicitly set.
copy([extra])Creates a copy of this instance.
explainParam(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
getOrDefault(param)Gets the value of a param in the user-supplied param map or its default value.
getParam(paramName)Gets a param by its name.
hasDefault(param)Checks whether a param has a default value.
hasParam(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined(param)Checks whether a param is explicitly set by user or has a default value.
isSet(param)Checks whether a param is explicitly set by user.
load(path)Reads an ML instance from the input path, a shortcut of read().load(path).
read()Returns an MLReader instance for this class.
save(path)Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set(param, value)Sets a parameter in the embedded param map.
transform(dataset[, params])Transforms the input dataset with optional parameters.
write()Returns an MLWriter instance for this ML instance.
Attributes
Returns all params ordered by name.
Methods Documentation
-
clear(param: pyspark.ml.param.Param) → None¶ Clears a param from the param map if it has been explicitly set.
-
copy(extra: Optional[ParamMap] = None) → PipelineModel[source]¶ Creates a copy of this instance.
New in version 1.4.0.
- Parameters
extra – extra parameters
- Returns
new instance
-
explainParam(param: Union[str, pyspark.ml.param.Param]) → str¶ Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
-
explainParams() → str¶ Returns the documentation of all params with their optionally default values and user-supplied values.
-
extractParamMap(extra: Optional[ParamMap] = None) → ParamMap¶ Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
- extradict, optional
extra param values
- Returns
- dict
merged param map
-
getOrDefault(param: Union[str, pyspark.ml.param.Param[T]]) → Union[Any, T]¶ Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
-
getParam(paramName: str) → pyspark.ml.param.Param¶ Gets a param by its name.
-
hasDefault(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param has a default value.
-
hasParam(paramName: str) → bool¶ Tests whether this instance contains a param with a given (string) name.
-
isDefined(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user or has a default value.
-
isSet(param: Union[str, pyspark.ml.param.Param[Any]]) → bool¶ Checks whether a param is explicitly set by user.
-
classmethod
load(path: str) → RL¶ Reads an ML instance from the input path, a shortcut of read().load(path).
-
classmethod
read() → pyspark.ml.pipeline.PipelineModelReader[source]¶ Returns an MLReader instance for this class.
New in version 2.0.0.
-
save(path: str) → None¶ Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
-
set(param: pyspark.ml.param.Param, value: Any) → None¶ Sets a parameter in the embedded param map.
-
transform(dataset: pyspark.sql.dataframe.DataFrame, params: Optional[ParamMap] = None) → pyspark.sql.dataframe.DataFrame¶ Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters
- dataset
pyspark.sql.DataFrame input dataset
- paramsdict, optional
an optional param map that overrides embedded params.
- dataset
- Returns
pyspark.sql.DataFrametransformed dataset
-
write() → pyspark.ml.util.MLWriter[source]¶ Returns an MLWriter instance for this ML instance.
New in version 2.0.0.
Attributes Documentation
-
params¶ Returns all params ordered by name. The default implementation uses
dir()to get all attributes of typeParam.
-