Subset
subset.RdReturn subsets of SparkDataFrame according to given conditions
Usage
subset(x, ...)
# S4 method for class 'SparkDataFrame,numericOrcharacter'
x[[i]]
# S4 method for class 'SparkDataFrame,numericOrcharacter'
x[[i]] <- value
# S4 method for class 'SparkDataFrame'
x[i, j, ..., drop = F]
# S4 method for class 'SparkDataFrame'
subset(x, subset, select, drop = F, ...)Arguments
- x
a SparkDataFrame.
- ...
currently not used.
- i, subset
(Optional) a logical expression to filter on rows. For extract operator [[ and replacement operator [[<-, the indexing parameter for a single Column.
- value
a Column or an atomic vector in the length of 1 as literal value, or
NULL. IfNULL, the specified Column is dropped.- j, select
expression for the single Column or a list of columns to select from the SparkDataFrame.
- drop
if TRUE, a Column will be returned if the resulting dataset has only one column. Otherwise, a SparkDataFrame will always be returned.
See also
Other SparkDataFrame functions:
SparkDataFrame-class,
agg(),
alias(),
arrange(),
as.data.frame(),
attach,SparkDataFrame-method,
broadcast(),
cache(),
checkpoint(),
coalesce(),
collect(),
colnames(),
coltypes(),
createOrReplaceTempView(),
crossJoin(),
cube(),
dapplyCollect(),
dapply(),
describe(),
dim(),
distinct(),
dropDuplicates(),
dropna(),
drop(),
dtypes(),
exceptAll(),
except(),
explain(),
filter(),
first(),
gapplyCollect(),
gapply(),
getNumPartitions(),
group_by(),
head(),
hint(),
histogram(),
insertInto(),
intersectAll(),
intersect(),
isLocal(),
isStreaming(),
join(),
limit(),
localCheckpoint(),
merge(),
mutate(),
ncol(),
nrow(),
persist(),
printSchema(),
randomSplit(),
rbind(),
rename(),
repartitionByRange(),
repartition(),
rollup(),
sample(),
saveAsTable(),
schema(),
selectExpr(),
select(),
showDF(),
show(),
storageLevel(),
str(),
summary(),
take(),
toJSON(),
unionAll(),
unionByName(),
union(),
unpersist(),
unpivot(),
withColumn(),
withWatermark(),
with(),
write.df(),
write.jdbc(),
write.json(),
write.orc(),
write.parquet(),
write.stream(),
write.text()
Examples
if (FALSE) { # \dontrun{
# Columns can be selected using [[ and [
df[[2]] == df[["age"]]
df[,2] == df[,"age"]
df[,c("name", "age")]
# Or to filter rows
df[df$age > 20,]
# SparkDataFrame can be subset on both rows and Columns
df[df$name == "Smith", c(1,2)]
df[df$age %in% c(19, 30), 1:2]
subset(df, df$age %in% c(19, 30), 1:2)
subset(df, df$age %in% c(19), select = c(1,2))
subset(df, select = c(1,2))
# Columns can be selected and set
df[["age"]] <- 23
df[[1]] <- df$age
df[[2]] <- NULL # drop column
} # }